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Introduction
In an effort to treat breast cancer, selective estrogen receptor modulators (SERMs) 
have been used to modulate the estrogen-signaling pathway with mixed results [1].  A 
classic example of a SERM is tamoxifen.  When used as a therapeutic for a limited time, 
tamoxifen is effective in disrupting the estrogen-signaling pathway.  Unfortunately, with 
prolonged use, breast tumor cells become resistant to tamoxifen and are able to use the 
bioactivated metabolite of tamoxifen to interact with coactivators that activate the 
estrogen-signaling pathway, reversing its original role [1].  An alternative therapeutic 
approach is to target the binding site of the coactivator protein.  Recent studies have 
shown that some small molecules may bind in sites (e.g. coactivator site) other than the 
estradiol binding site [2] and still disrupt the estrogen-signaling pathway.  By binding in 
the coactivator site while estradiol is bound in the estrogen receptor (ER) ligand binding 
domain (LBD), these small molecules act as coactivator binding inhibitors (CBIs) 
because the coactivator proteins can no longer bind; thus, gene transcription is 
inhibited.  Potentially, these CBIs can act as a new therapeutics against environmental 
or natural agonists of ER. Quantitative structure-activity relationship (QSAR) studies 
have been used to develop therapeutics that will compete and bind in the estradiol 
binding site of the ER LBD [3-5].  Because these studies have focused on the estradiol 
binding site, new potential ER disruptors that bind in the coactivator site have been 
missed.  We propose to develop a new computational approach to predict 
therapeutically useful ER disruptors by investigating CBIs binding to the coactivator site 
in conjunction with estrogenic compounds bound in the estradiol site

Body
Task 1: Computationally predict the relative binding of CBIs in the coactivator site and 
the CBI binding properties. 

Three estrogenic compounds were chosen as positive controls, estradiol (E2), 1-
methyl-2-amino-6-phenylimadazo[4,5b]pyridine (PhIP), and diethylstilbestrol (DES).  
These three compounds have been shown to be capable of activating the estrogen 
receptor and producing an estrogen specific response (see Appendix A and more 
Korach 1985).  Other compounds that have been shown to inhibit the function of ER 
(Appendix A) were chosen as possible CBI’s.  These compounds are aromatic 
heterocyclic amines and known mutagens (refs). 

The entire ER-LDB was used in the docking calculations by including it in all the 
atom interaction grids.  As shown in appendix A and figure 1, estradiol docking 
recovered the crystallographic binding mode with a probability of binding in the native 
binding cavity of ~99%.  Striking however, was the discovery of a second binding site in 
the interior of the protein (Task 1.1).  This site was found because the whole protein 
was included in the docking calculations and has only been discussed twice before in 
the literature, once in the paper describing the original crystal structure (Brzozovski 
1997) where it was defined only as a solvent channel.  A second mention of this cavity 
in the literature was an attempt to explain unusual kinetics experiments (van Hoorn, 
2002).  In our ranking, we found that compounds, which inhibited the activation of the 
ER, showed a preference in binding to the alternative site (Figure 2 and activiation 
figure) (Task 1.2).
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Figure 1: The Boltzman binding distribution of E2 and other heterocyclic amines on the ER-LDB at the 
native binding cavity and the back cavity. Details of the calculations and compounds are described in 
appendix A.

Figure 2: ER-LDB shown with the backbone in ribbons and binding cavities in surface representation 
colored by residue type (red, negative charge; blue, positive charge; green, polar; white non-polar).  The 
protein is rotated 180° to show the opposite positions of the cavities on the surface. E2 is shown in stick 
representation inside the crystallographic binding site, while the PhIP congener 3-methyl-5phenyl-PhIP is 
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shown in its predicted binding cavity. The blue surface on the protein at the left defines the region of 
residues critical for binding the co-activator protein.

The end of the alternative binding site adjoins residues important for binding the 
co-activator protein (Figure 3).  We hypothesized that compounds bound in this 
alternate cavity could affect the dynamics of residues on the surface of the protein.  
Molecular dynamics simulations of highest ranking CBI (3M5-PhIP) showed that 
significant distortion of the protein surface was possible when the alternate cavity 
contains small molecules (Task 1.3).  In our simulations of 3M5-PhIP bound to ER-LDB 
we noticed that Met 357 was very dynamic, the sidechain would move significantly 
during the 2ns simulation.  This sidechain motion affected the surface of the protein, 
especially in the region required for co-activator binding (Figure 4).  Two separate 
simulations had similar results.  Control simulations of E2 and the Tif-2 peptide from the 
co-activator protein under underway.  Comparison of the control simulations against 
simulations of the CBI bound in the alternate cavity will allow for better quantification of 
the surface distortions.   

Figure 3: The ER-LDB with a bound co-activator peptide NR2 from TIF2. The ER protein backbone is 
colored in cyan and shown in cartoon with cylinders and arrows signifying α-helices and β-strands, 
respectively. The peptide is drawn in stick representation. Surface residues of the ER protein that interact 
with the peptide are shown as surfaces colored by residue type as described in figure 2.  Arrows show 
positions of the charge clamp residues, Asp 542 and Lys 362.
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Figure 4: The ER-LDB before molecular dynamics and after 2ns of simulation time.  The protein 
backbone is shown in ribbon representation and colored in cyan.  Methionine 357 is shown in stick 
representation. Surface residues that interact with the helical peptide of the co-activator protein are in 
blue.  Residues that become accessible to solvent after simulation are shown in magenta.  The difference 
in exposed surface area of the protein is about 200 A2.  Before the simulation is started the sidechain of 
Methionine 357 points in towards the alternate cavity were 3M5-PhIP is present.  Early in the simulation, 
the sidechain  switched positions to point out towards the solvent accessible surface.  This disrupts at 
least one small hydrophobic pocket that is required for optimal co-activator binding.

(Task 1.4) The resulting combination of CBIs and estrogenic compounds are currently 
being re-ranked based on the MD simulations. We also received a 40,000 compound 
library to screen using our methods developed in this project and this work is continuing. 

Task 2: Biologically assay the effect of the CBI on the estrogen receptor activation 
(Months 1-12)
Order and obtain the CBIs and estrogenic compounds.  (Month 1)
Measure estrogen receptor activation by transfecting a reporter plasmid that contains 3 
vitellogenin of estrogen response elements upstream of a luciferase reporter gene in 
MCF-7 human breast cancer cells. Receptor activity will be measured in the presence 
estradiol and each individual CBI.  (Month 2-3)
Compare the effect of the CBIs on estradiol to their effect on the other estrogenic 
compounds analyzed in the docking program. (Months 4-6)
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Figure XXX
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Task 3: Spectroscopically measure the binding of the CBI to the ER LBD

Full length, recombinant human estrogen receptor α (hERα) is commercially 
available through Sigma Aldrich, Inc.  It is supplied as 1.5 μM purified protein (750 
pmoles in 500 μl of 50 mM tris-HCl, pH 8.0, 500 mM KCl, 2 mM EDTA, 1 mM sodium 
orthovanadate and 10% glycerol). Recombinant hERα is produced as an active, soluble 
66.4 kDa protein by a baculovirus expression system, and thus possesses post-
translational modification.  For NMR binding studies, it was first necessary to determine 
alternative buffer conditions in which the ER protein remained stable. Both tris and 
glycerol contribute large proton signals in the NMR data that interfere with the detection 
of submicromolar quantities of sample. In addition, high salt concentrations can result in 
protein precipitation when small volumes of compounds, such as PhIP and E2, which 
are only soluble in organic solvents such as DMSO, are added.  After numerous trials, 
we had determined that the protein was able to remain stable for a few days after being 
exchanged after extensive dialysis (Spectrapor 7, MWCO 1000 dialysis tubing) into 
10mM Na2HPO4, pH 8.0, 120mM NaCl, 2.7mM KCl (PBS) buffer (Task 3.1).

Various NMR spectroscopic techniques can be used to screen for interactions 
between proteins and ligands (reviewed in (Coles et al., 2003 and Meyer and Peters 
2003)). Transferred NOESY (trNOESY) experiments  are routinely used to detect ligand 
binding to a target protein under conditions of fast exchange (ligands that bind with mM 
to mM dissociation constants).  The intensity of each intra-ligand NOE crosspeak is 
governed by the population-weighted cross-relaxation rate.   A strong negative NOE 
crosspeak is observed for binders (black peaks), as opposed to weakly positive (red 
peaks) or zero NOE crosspeaks for non-binders or in the absence of protein.  Thus, the 
sign flip of the NOE cross peak between the free versus bound states acts as a simple 
binary filter to distinguish binders from nonbinders.
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Figure ?: (a) ID-1H spectrum of 5.95 mM PhIP dissolved in deuterated DMSO. (b) ID-1H spectrum of 132 
mM estradiol dissolved in deuterated DMSO.(c) The expanded region of a 900 ms mixing time NOESY 
spectrum of 5.95 mM PhIP in DMSO exhibits weak positive NOE crosspeaks (boxed in red). (d) The 
expanded region of a 300 ms mixing time NOESY spectrum of 3 μM ER and 120 μM PhIP indicates that 
PhIP binds as evidenced by the strong, negative  crosspeaks (boxed in black).Concentration of PhIP is 
50X greater in (c) than in (d).  Spectrum in (d) is plotted at 2 X lower intensity level relative to spectrum in 
(c) for presentation purposes. (e) The expanded 300 ms mixing time NOESY spectrum after addition of 
1.5 μM estradiol to the ERα+PhIP sample shows that PhIP does not bind (red peaks).  Spectrum (e) is 
plotted at 2X lower intensity level relative to spectrum in (d).  This result suggests that PhIP has been 
displaced from binding to ERα by estradiol, and that both ligands may be binding in the same site. Note 
that the chemical shifts of PhIP change depending on solvent (DMSO in spectrum (c) versus aqueous 
buffer in spectra (d) and (e)).

We observed a sign flip in NOE crosspeaks of PhIP from positive (red) to 
negative (black) in the trNOESY spectra when PhIP was added to ERα, confirming 
experimentally that PhIP does indeed bind to ER (Figure ?c and d) (Task 3.2). Since 
estradiol is known to bind with high affinity to ERα (Kd ~ 10-8-10-9 M), we could not use 
the trNOESY method to detect its binding to ERα.  However, since the estradiol's 
binding site on ERα is known, it is possible to use this information to design a trNOESY 
competition experiment that can provide information about where PhIP is binding.  If 
PhIP is binding in a different site than estradiol, than we should be able to still observe 
negative (black) peaks because PhIP and estradiol are binding in two different sites, 
and estradiol is not displacing PhIP binding.  In contrast, if PhIP is binding in the same 
site as estradiol, then adding estradiol to the PhIP/ERα mixture should competitively 

a b

c d e
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displace it since estradiol binds much more strongly to ERα.  In this case, we would 
observe another sign flip of the PhIP peaks from black (binding) to red (not binding). 
Addition of estradiol to the PhIP/ERα mixture resulted in PhIP cross peaks flipping sign 
from black to red (Figure ?d and e) and thus suggesting that both PhIP and estradiol 
are binding in the same site on Erα (Task 3.3).  This result is consistent with the results 
shown by us and others that PhIP exposure increases MCF-7 cell proliferation and ERα 
activation. It also agrees with our computational model and with the idea that PhIP 
directly binding to ERα is responsible for the effects observed.  However, we can not 
completely rule out the possibility that PhIP is binding in another site, and that estradiol 
prevents PhIP from binding because of a conformation change in the protein.

Thus in order to further clarify the identity of the ligand binding site, we initiated 
the expression of 15N-labeled ERα ligand binding domain (LBD) (Task 3.4). Dr. Myles 
Brown (Harvard University) has generously provided us with the expression vector for 
the hERα-LBD).  The GST-LBD fusion protein exhibits binding affinity to estradiol (KD ~ 
0.1 to 3.3 nM) that is comparable with reported values measured for wild-type MCF-7 
ERα expressed in vivo (Halachmi et al., 1994).

The hERα-LBD is expressed as a GST fusion protein in BL21(DE3) cells. Cell 
growth is carried out for 16 hours at 37 ºC with shaking at 300 rpm (INOVA shaker) 
using either an autoinduction method, as introduced by Studier (Studier, 2005) or with a 
modified version of the autoinduction method described specifically for NMR studies 
(Studier, 2005; Tyler et al., 2005). Cells are harvested by centrifugation and lysed by 
sonication on ice in a buffer containing 50mM Tris-Cl, pH 7.5, 100mM NaCl, 20mM β-
mercaptoethanol, 0.5% NP-40, followed by centrifigation at 30,000g at 4 ºC for 30min to 
remove cell debris. 

Although the expression yields are very high for the GST-ERα-LBD protein, as 
can be seen in Figure ??, the protein is insoluble.  Currently, we are in the process of 
modifying the expression protocol (addition of glycerol, tween and other detergents, as 
well as lower temperature) to increase the solubility of the protein.  Once this is 
accomplished, the resulting supernatant will then be diluted and bound to a glutathione 
sepharose 4B column (Amersham) (Fabbro et al., 1999). After several washes with PBS 
buffer, the hERα-LBD protein will be cleaved from GST and eluted from the sepharose-
GST column by treatment with thrombin (Amersham).  Yields will be determined by the 
Bradford protein assay (BioRad).  The purified protein will then be concentrated into 
PBS buffer, pH 7.4 by centrifugation using either a Centricon YM-3 or Ultra-4 
concentrators (Amicon) (Tyler et al., 2005).
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Figure ??:  Polyacrylamide gel electrophoresis (4-12%) results showing high expression levels of GST 
ERα-LBD. (a) Most of the protein is in the insoluble fraction (lane 1: GST-ERα-LBD uninduced; lane 2: 
induced 1hr. @ 37C; lane 3: induced 2hrs. @ 37C; lane 4. clear lysate (soluble fraction); lane 5. insoluble 
fraction.  (b) ER expression in autoinducing minimal media, (lane 1: molecular weight markers; lane 2: 
Grew ~16hrs, 37C, 300rpm, cell lysate; lane 3: 10 times dilution).

The availability of 15N-labeled ERα-LBD protein will allow us to carry out 
Structure Activity Relationship by NMR (SAR-by-NMR) studies (Hajduk et al., 1997) that 
will clearly define the binding site and orientation of not only PhIP, but other CBIs and 
HAs.  

Task 4: Submit manuscript for publication.
A large portion of the work detailed above in Tasks 1-3 has been submitted and 

accepted for publication in the American Chemical Society journal, Chemical Research 
in Toxicology.  At the time of this report, the projected publication date is October 5th

2005. We anticipate submission of a second manuscript describing the characterization 
of the co-activator binding site interactions with ligands by 15N NMR and molecular 
dynamics simulations.

a b
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Key Research Accomplishments
Posters and Accepted Abstracts:

• 19th National Meeting of the Protein Society San Diego CA, August 2004.
• AACR Anaheim CA, March 2005.
• DOD BCRP Meeting “Era of Hope” Philadelphia PA, June 2005.
• 36th Meeting of The Environmental Mutagen Society San Francisco CA, 

September 2005.

Manuscripts:
• “PhIP Carcinogenicity in Breast Cancer:Computational and Experimental 

Evidence for Competitive Interactions with Human Estrogen Receptor “ in press 
Chemical Research in Toxicology, Oct 2005.

Reportable Outcomes
Presentations: 

• Biosciences Directorate Symposium LLNL, November 2004.
• Biosciences Directorate Postdoctoral Symposium LLNL, July 2005.

Invited Talks-Lectures:
• University of California-Davis Cancer Center, Sacremento CA, January 2005.
• Chemistry Department University of the Pacific, Stockton CA, February 2005.
• Bio-engineering Department University of the Pacific, Stockton CA, March 2005.
• Edward Teller Education Center, Lawrence Livermore Natl. Lab., July 2005.

NIH R01 grant entitled “Dietary exposure to multiple heterocyclic amines may cause 
fewer breast tumors than exposure to single carcinogens” to be submitted October 1, 
2005.

Conclusions
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Abstract

Many carcinogens have been shown to cause tissue specific tumors in animal models. 

The mechanism for this specificity has not been fully elucidated and is usually attributed 

to differences in organ metabolism. For heterocyclic amines, potent carcinogens that 

are formed in well-done meat, the ability to either bind to the estrogen receptor and 

activate or inhibit an estrogenic response will have a major impact on carcinogenicity. 

Here we describe our work with the human estrogen receptor alpha (ERα) and the 

mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated 

metabolite of PhIP, N2-hydroxy-PhIP. We demonstrate that PhIP binds with the ligand 

binding domain (LBD) both by computational docking and NMR analysis. This binding 

competes with estradiol (E2) in the native E2 binding cavity of the receptor. In in vitro

assays, we find that PhIP, in contrast to the other heterocyclic amines, increases cell-

proliferation in MCF-7 human breast cancer cells and activates the ERα receptor. We 

also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ERα activation. We 

propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast 

tumors and the presumptive human breast cancer associated with the consumption of 

well-done meat maybe mediated by this receptor activation.
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Introduction
Changes in breast cancer incidence among immigrant populations suggest that 

lifestyle factors, including diet, may be an important cause of the disease and a potent 

clue for treatment. One dietary modification that is frequently found among immigrants 

from eastern to western countries is an increase in the consumption of cooked muscle 

meats. Well-done cooked muscle meats are known to contain potent mutagens and 

mammary carcinogens (e.g. in rodents) belonging to the heterocyclic amine (HA) class 

of chemical compounds (Felton et al., 2004). Three of the heterocyclic amines 

commonly found in meats cooked under household conditions are: 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline 

(MeIQx), and 2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine, (IFP). The relative 

amounts of these compounds formed during cooking depend on both meat type and 

cooking conditions (Knize et al., 1998). PhIP is frequently the most mass abundant 

heterocyclic amine produced during the cooking of beef, pork, and chicken, (Keating et 

al., 2000; Knize et al., 1998; Norrish et al., 1999; Pais et al., 2000; Sinha et al., 1995; 

Skog et al., 1997; Wakabayashi et al., 1992). Humans are routinely exposed to varying 

amounts of these food-derived compounds, and there are studies supporting their role 

in human carcinogenesis (Knize and Felton, 2005). 

When given in the diets of rats, PhIP has been shown to cause the formation of 

hormone-dependent mammary tumors (Ito et al., 1991). A powerful liver carcinogen, 

MeIQx also causes breast tumors in Sprague-Dawley rats but is a much less potent 

mammary carcinogen than PhIP (Snyderwine, 2002; Wakabayashi et al., 1992). IFP 

has been shown to be a potent mutagen, but has not yet been tested for carcinogenicity 

in an animal model. Although the mechanism of carcinogenesis for these compounds 
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has not been fully elucidated, metabolic activation and subsequent formation of DNA 

adducts is believed to be critical (Snyderwine, 2002; Snyderwine et al., 2003). The 

metabolic activation of PhIP, a two-phase process, is representative of the activation 

pathways of the other HAs. During Phase I metabolism, PhIP is oxidized via cytochrome 

P4501A2 (CYP1A2) to a hydroxylated intermediate, 2-hydroxyamino-1-methyl-6-

phenylimidazo [4,5-b] pyridine (N2-hydroxy-PhIP). N2-Hydroxy-PhIP is then converted to 

a more biologically reactive form via Phase II metabolizing enzymes, primarily the 

acetyltransferases or sulfotransferases. This esterification generates electrophilic O-

sulfonyl and O-acetyl esters, which have the capacity to bind DNA and cellular proteins. 

In addition to diet, hormonal factors also play a role in mammary gland 

tumorigenesis. Estrogen receptor α (ERα), a member of the nuclear receptor family, 

regulates estrogen-responsive gene expression upon ligand binding. Structurally, the 

ERα protein contains four major domains: activation, DNA binding, hinge, and ligand 

binding domains (LBD). Crystal structures of LBD-ERα with agonist and antagonists 

bound have been published (Eiler et al., 2001; Henke et al., 2002; Pike et al., 1999; 

Pike et al., 2001; Renaud et al., 2003; Ruff, 1999; Shiau et al., 1998; Shiau et al., 2002; 

Warnmark et al., 2001). Ligand dependent ERα activation begins with 17-β-estradiol 

(E2) binding the ERα monomer and releasing protein chaperones from the receptor 

(Pratt and Toft, 1997). With E2 bound, ERα monomers then dimerize (Kumar and 

Chambon, 1988) and interact with co-activator and co-repressor proteins (Moras and 

Gronemeyer, 1998). Transcription begins when all factors have been recruited and ERα

binds to the estrogen response element (ERE) of the specific gene. 
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Because exposure to PhIP alone is sufficient to cause tumors in rodent models, 

PhIP may be important in mammary tumor development beyond general DNA adduction 

and tumor initiation. Exposure to PhIP has been shown to increase cell proliferation in 

mammary gland terminal end buds, potential sites of tumor development, suggesting 

that PhIP promotes tumorigenesis by causing the further replication of PhIP-DNA 

adducts in target cells (Snyderwine, 1999). This potential role in promotion is 

strengthened by the findings of Pfau et al. and Gooderham et al. demonstrating that 

PhIP exposure increases human breast cancer cell proliferation and activates ERα

(Gooderham et al., 2002; Pfau et al., 2000) at concentrations that are less than those 

required for mutagenic activity. Gooderham and coworkers have also shown that the 

pure anti-estrogen ICI 182,780 abolishes PhIP transcriptional activity, further suggesting 

that PhIP binds specifically to ERα (Lauber et al., 2004). However, in studies on 

ovarectomized Sprague-Dawley rats, PhIP did not produce any estrogenic response 

(Kawamori et al., 2001), suggesting that PhIP is not a strong estrogen mimic in this 

assay system. Other studies propose that PhIP promotes carcinogenesis by retarding 

mammary gland development (Snyderwine et al., 1998), increasing serum prolactin 

levels (Venugopal et al., 1999b) and inhibiting apoptosis (Venugopal et al., 1999a). 

Here, we are the first to report that (1) PhIP binds directly to the ERα-ligand 

binding domain and competes with estradiol in the native binding cavity, and (2) the 

PhIP phase I metabolite, N2-hydroxy-PhIP, and two heterocyclic amines, MeIQx and 

IFP, inhibit ERα activation. We also confirm the proliferative effect of PhIP on MCF-7 

cells and the estrogen receptor activation shown by Lauber et al. (Lauber et al., 2004). 
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Taken together, these results suggest that PhIP activates the estrogenic response via 

direct binding to ERα, thereby explaining its tumor specificity. 

Methods

Ab initio calculations

Each ligand (E2, PhIP, N2-hydroxy-PhIP, IFP, and MeIQx) was geometry 

optimized at the RHF 6-31G* level with Gaussian 98, revision A.11.4 (Frisch M. J.  et 

al., 2002) (Fig. 1A). Default settings for convergence criteria were satisfied for each 

ligand. Atomic partial charges for the ligands were determined by electrostatic potential 

fitting (Wang et al., 2000). 

Homology Modeling

A high-resolution crystal structure of the ERα ligand binding domain (1GWR, 

(Warnmark et al., 2002)) was chosen from the Protein Data Bank to model protein-

ligand interactions in docking. There were residues in two loops and other atoms in the 

structure where electron density was not present in chain A (Warnmark et al., 2002). 

These loops and missing atoms were modeled by aligning 1GWR to another ER 

structure (PDB ID 1G50), using an in-house alignment program, LGA (Zemla, 2003). 

The primary sequences of the modeled loops were identical between structures. 

Appropriate hydrogen atoms were added to the structure using the CHARMM 27 force 

field (MacKerell et al., 1998).
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Docking

The estrogen receptor protein (1GWR homology model) and ligands (E2, PhIP, 

N2-hydroxy-PhIP, and MeIQx) were prepared for the docking studies as described in the 

Autodock manual (Morris et al., 1998). The original source code was modified to allow a 

grid cube size of 128 points with a 0.375 Å grid spacing. The resulting grid covered 

~80% of the ligand binding domain. Using the lamarkian genetic algorithm option, the 

total number of docking steps was set to 200 and cluster analysis was activated. Each 

ligand pose was then grouped according to its position on the protein. A Boltzmann 

probability, Ki, was then derived from the calculated free energy ∆Gi, gas constant R, 

and temperature, T (30o C) of each pose, i.

K i = e(−∆Gi / RT )
Equ. 1

Docking poses in each grouping, s, were then weighted according to Equ. 2.

p
i

=
K i,s

i,s
∑

K i
i

∑ Equ. 2 

Here, pi, is the weighted probability of finding pose, i, in grouping, s. These probabilities 

were then summed for each category.

Transferred Nuclear Overhauser Effect Spectroscopy (trNOESY)

All spectra were recorded at 30o C using a Varian Inova 600 MHz spectrometer. 1H-1D 

and phase sensitive 2D-nuclear Overhauser effect spectroscopy (NOESY) experiments 

(900 ms mixing time) were carried out on 1.0 mg of PhIP (5.94 mM) or 27 mg of E2 
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(132.1 mM) dissolved in 750 µL deuterated DMSO) in the absence of ERα protein (Fig. 

1B, C).  Human, recombinant ERα protein was purchased from Sigma-Aldrich as 750 

pmols of purified protein in 500 µL 50 mM Tris-HCL, pH 8.0, 500 mM KCL, 2 mM DTT, 

1mM EDTA, 1 mM sodium orthovanadate and 10% gylcerol. We first determined 

alternative buffer conditions in which the ERα protein remained stable. Both Tris and 

glycerol contribute large proton signals in the NMR data that interfere with the detection 

of micromolar quantities of PhIP and E2. In addition, high salt concentrations are not 

compatible with adding small volumes of PhIP and E2, which are only soluble in organic 

solvents such as DMSO, and results in precipitation of the protein. We determined that 

ERα remained stable for several days after being exchanged (using dialysis, 

MWCO=10,000) into 50 mM Na2PO4, pH 8.0, 200 mM KCL, 1% β-mercaptoethanol. 

Transferred NOESY (trNOESY) experiments (300 ms mixing time) were used to detect 

whether binding occurred upon addition of 40 molar excess of PhIP (120 µM) to a 3 µM 

solution of ER in NMR buffer. TrNOESY is useful in detecting binding when the ligand is 

in fast exchange between the free and bound states (10-2-10-6 M range for the 

dissociation constant). Adding molar excess of E2 to the solution of ER and PhIP results 

in precipitation. This is most likely due to the fact that E2 strongly binds ERα. To 

determine if E2 could displace PhIP from the binding pocket, 0.25 molar ratio of E2 (1.5 

µM) was added to the 6 µM ERα protein-240 µM PhIP solution.  300 increments were 

collected in t1, each with 128 or 256 scans and 1024 complex data points collected in t2. 

The total amount of DMSO in the protein/ligand samples did not exceed 2%. NMR data 

was processed using VNMR software (Varian Inc., Palo Alto CA), and the 2D frequency 

domain matrices were analyzed using FELIX (version 97, Accelrys, San Diego, CA).
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Cell Culture

MCF-7 cells were obtained from American Type Culture Collection (ATCC, 

Manassas, VA) and were grown in DMEM with 5% FBS, 1% non-essential amino acids, 

10 µg/ml insulin, 2 mM L-glutamine, and 1% penicillin/streptomycin. All tissue culture 

supplies, with the exception of the charcoal stripped fetal bovine serum, were obtained 

from Invitrogen (Carlsbad, CA). Cells were maintained at 37°C with 5% humidity. For 

proliferation assays and estrogen responsive reporter assays, Opti-MEM (phenol red-

free medium) was used with 5% charcoal stripped fetal bovine serum (Clontech, Palo 

Alto CA) to minimize estrogen-like activity contributed by the phenol red and serum 

(Soto et al., 1995; Zacharewski, 1998).

Cell proliferation assay

For cell proliferation assays 3 x 103 cells were seeded into each well of a 96-well 

tissue culture plate in Opti-MEM medium. Twenty-four hours after plating, the medium 

was replaced with medium supplemented with increasing concentrations of E2 (Sigma, 

St. Louis MO), PhIP (Toronto Research Chemicals, Downsview, Ontario), MeIQx 

(Toronto Research Chemicals, Downsview, Ontario) and IFP, treated with the 

appropriate concentration of vehicle or left untreated. IFP is a natural product isolated 

from a heated mixture of creatine, glutamic acid and sucrose (Pais et al., 2000). 

Heterocyclic amines were initially dissolved in DMSO and then serially diluted in 

medium. DMSO concentration was never greater than 0.5%. Ethanol was used to 
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dissolve E2. The effect of the heterocyclic amines was determined by comparing cell 

growth to the appropriate vehicle-treated cells and untreated cells.

The effect of test compounds on cell growth was evaluated 48 and 72 hours after 

the initiation of treatment. Cell growth was quantified using an Aqueous Non-

Radioactive Cell Proliferation Assay (Promega, Madison WI) with absorbance of the 

wells measured in a standard multi-well plate reader at 490nm. Briefly, this colormetric 

assay measures the bioreduction of a tetrazolium compound (3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS) to a 

formazan product. The conversion of MTS is directly proportional to the number of living 

cells in culture. Each experiment was performed at least three individual times with 4 –

6 replicates per experiment. Effect of chemical was determined by comparing cell 

growth to the appropriate vehicle-treated cells and untreated cells. Error is presented as 

the standard error of the mean. Statistical significance was assessed using Wilcoxon 

Rank Sum Test.

o Estrogen Responsive Reporter Assay

Heterocyclic amines were tested for estrogenic and anti-estrogenic activity using 

a standard estrogen responsive reporter plasmid containing three vitellogenin estrogen 

responsive elements (EREs) upstream of the luciferase reporter gene (EREx3-Luc). 

The EREx3-Luc was a kind gift of Diane Klotz, NIEHS. EREx3-Luc was co-transfected 

with a commercially available control renilla reporter plasmid (pRL-TK, Promega, 

Madison WI) to control for transfection efficiency and for the normalization of the results. 

The reporter plasmids were transfected into MCF-7 cells (Klotz et al., 1996; Nodland et 
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al., 1997; Reel et al., 1996; Safe et al., 1998), which constitutively express ERα and 

have well-characterized responses to estrogenic stimuli. The ability of the compounds to 

induce luciferase reporter gene activity was compared to 10-9 M E2 and appropriate 

negative controls, as previously described (Charles et al., 2002).

MCF-7 cells were plated in 96-well plates, designed specifically for use in a 

luminometer (Perkin Elmer, Wellesley, MA) at a density of 1X105 cells/well in Opti-MEM 

medium. The cells were left untransfected or were co-transfected with 200 ng each of 

luciferase reporter and renilla control plasmids using lipofectAMINE™ 2000 (Invitrogen, 

Carlsbad, CA) optimized for 96-well plate experiments according to directions. After a 5-

hour transfection, the untransfected cells were incubated with just culture medium to 

quantify background levels. The transfected cells were incubated with the same culture 

media alone or supplemented with heterocyclic amines, E2 or both. Control cells were 

incubated with a corresponding amount of compound solvent at the highest 

concentration.

The cells were incubated at 37°C for 18 hours and then assayed for luciferase 

and renilla activity using a dual luciferase/renilla reporter assay kit (Promega, Madison, 

WI) according to directions. Each experimental condition was duplicated six to eight 

times in the 96-well plate and each plate was read in the luminometer twice. Luciferase 

activity was normalized to the renilla controls and compared to 10-9 M E2, standard in 

estrogen responsive luciferase assays. Estrogen receptor-mediated activation was 

determined by comparisons to negative and E2 controls. All experiments were repeated 

more than 3 times and all data were normalized to E2 (10-9M) activation. For 

competition assays, HAs (alone or in combinations) and/or E2 were added 
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simultaneously. Error is presented as the standard error of the mean. Statistical 

significance was assessed using Wilcoxon Rank Sum Test.

Results

Docking Studies

Initial docking of E2 to the ERα LBD as a control calculation reveal the ligand 

pose as seen in the 1GWR crystal structure, with the initial position of the ligand at least 

15 Å outside of the native binding cavity. PhIP and N2-hydroxy-PhIP were manually 

docked in the same orientation as E2 to match the crystal structure (Brzozowski et al., 

1997), where the exocyclic amine and imidazole ring were overlaid on the E2 hydroxyl 

group and ‘A-ring’, respectively. These initial structures started the docking trials of 

PhIP, N2-hydroxy-PhIP, IFP, and MeIQx, using the same grid of the protein as for E2. 

Eleven groupings contain 99% of all docking poses for each HA. For E2 and PhIP, the 

E2 binding cavity accounts for ~98% and ~89% of the total binding probability, 

respectively. PhIP binds favorably into the E2 binding site although the calculated 

probability of binding is lower when compared to E2 (Fig. 2A). Several poses of PhIP 

are observed in the E2 binding site. One pose is rotated by 180° with the phenyl ring 

pointing toward residues Glu353 and Arg394. However, the most favorable pose places 

the exocyclic amine proximal to the hydrogen bonds between Glu353 and Arg394, 

similar to the initial docking position and E2 pose in the co-crystal (Brzozowski et al., 

1997) (Fig. 2B). Side-chains from Leu387, Leu391, and Phe404 make hydrophobic 

contacts with each face of the imidazo ring. A possible hydrogen bond between the 

exocyclic primary amine and the carbonyl of Leu387 is also observed. The donor-H-
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acceptor angle is greater than 150°, and the hydrogen bond distance is less than 2.6 Å 

(Fig. 2B). The phenyl ring of PhIP is further stabilized by hydrophobic contacts with 

Leu346 on one face and by Met343 and Met421 around the edge of the ring. The face 

of the phenyl ring opposite Leu346 is open to solvent. Furthermore, the phenyl ring is 

turned relative to the rest of the molecule, which allows for a better fit to the binding 

cavity wall and is consistent with the geometry-optimized structure (Fig. 2B).

Two significant groupings of N2-hydroxy-PhIP, IFP, and MeIQx are observed, one 

in the native E2 binding site and another 11 Å away, close to helix 5. The lowest energy 

pose of N2-hydroxy-PhIP is in the E2 binding site and is in the same orientation as PhIP 

(i.e. all hydrophobic contacts were the same). However, the hydroxyl group does not 

form any hydrogen bonds with protein side-chains or backbone. Instead of forming any 

obvious hydrogen bonds, the hydroxyl group was further buried into a solvent channel 

under the Glu353•••Arg394 hydrogen bond bridge.

The planar and rigid IFP molecule assumes the same basic orientation of PhIP 

and N2-hydroxy-PhIP; the exocyclic amine of IFP is pointed toward the Glu353•••Arg394 

hydrogen bond bridge. A hydrogen bond is also observed between the primary amine of 

IFP and the carbonyl oxygen of Leu387. The binding orientation for MeIQx in the E2 

binding cavity is the opposite that of PhIP and N2-hydroxy-PhIP because the exocyclic 

amine points toward His524, similar to the orientation of the d-ring of E2 in the crystal 

structure (1GWR). We observe a hydrogen bond with the side-chain hydroxyl group of 

Thr347 and the exocyclic amine from MeIQx. In both IFP and MeIQx, the fused rings do 

not appear to make optimal hydrophobic interactions in comparison with PhIP and N2-

hydroxy-PhIP.
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NMR Ligand Binding Studies

We performed transferred NOESY (trNOESY) experiments (Clore et al., 1982; 

Gronenborn and Clore, 1982; Roberts, 1999) to detect PhIP binding to ERα protein. An 

observed sign flip in NOE crosspeaks of PhIP from positive (red) to negative (black) in 

the TrNOESY spectra (Fig. 3A, B), is an indication of binding to ERα protein. Adding E2 

to the PhIP/ ERα mixture causes the sign flip in the NOE crosspeaks to revert back to 

positive (red), indicating that PhIP is no longer bound to ERα (Fig. 3C).

MCF-7 Human breast cancer cell assays

Incubating ATCC MCF-7 cells with1x10-9M to1x10-7M E2 for 48 hours produces a 

slight increase in cell proliferation (7-12%) that is significantly different from vehicle-

treated cells. By 72 hours the increase in cell number is 20% above control cells and by 

96 hours the increase has risen to 40% (data not shown). This increase in cell number 

is consistent with other reports of proliferation response for this MCF-7 cell line 

(Rasmussen and Nielsen, 2002). Adding increasing doses of PhIP for 48 hours also 

causes a 7-10% increase in proliferation that is significantly different from control cells, 

but not significantly different from E2 at similar concentrations (Fig. 4). By 72 hours the 

increase in proliferation reaches 20% for 4x10-8M PhIP, which is not significantly 

different from the increase in cell number caused by a similar concentration of E2 (data 

not shown) cells treated with N2-hydroxy-PhIP show a slight, non-significant, increase in 

cell growth at low doses (4x10-9M). However at higher concentrations (4x10-6M), cell 
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growth is inhibited. Treating cells with concentrations of MeIQx and IFP higher than 

4x10-8M for 48 hours causes a significant decrease in cell growth (Fig. 4).

A standard luciferase reporter assay was used to measure the effect of HAs on 

ERα-dependent transcription activity. This assay relies on the ERα normally expressed 

by the MCF-7 cells. Active ERβ is not expressed in MCF-7 cells (Bardin et al., 2004; 

Cestac et al., 2005; Paruthiyil et al., 2004; St-Laurent et al., 2005), and therefore ERβ

interactions cannot contribute to the results. As shown in figure 5A, increasing amounts 

of PhIP causes a dose-dependent increase in ERα activity that is significantly different 

than untreated cells. In contrast, increasing amounts of N2-hydroxy-PhIP and the other 

HAs do not show this activation. Competition assays were used to determine the effect 

of simultaneous incubation of HAs (4x10-7M) and 10-9 M E2 on ERα activation (Fig. 5B). 

Treating MCF-7 cells with PhIP and E2 produces a response that is 13% less than E2 

alone. N2-Hydroxy-PhIP inhibits the E2-mediated activation of ERα by 40%, and MeIQx 

and IFP inhibit ERα activation to levels that are significantly lower than untreated cells. 

Cell viability was measured under identical conditions and is not affected by incubation 

with HAs separately or in combination with E2 at these concentrations (data not shown).

Effect of HA combinations on ERα activity

Competition assays were performed with PhIP, N2-hydroxy-PhIP, and MeIQx to 

determine the effect of simultaneous exposure to 4x10-7M PhIP and increasing amounts 

of the other compounds (Fig. 5C). Treating MCF-7 cells with either a 1:1 or 1:3 molar 

ratio of PhIP to other compounds significantly inhibits ERα transcription activity to levels 

that are lower than cells exposed to PhIP alone. 
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Discussion

Heterocyclic amines are known to be potent mutagens and rodent carcinogens, 

but the complete mechanism of carcinogenicity for these compounds has not been 

elucidated. This report is the first to show that PhIP binds directly to the ERα-ligand 

binding domain and competes with estradiol in the native binding cavity.  We also 

demonstrate the novel finding that N2-hydroxy-PhIP, the PhIP phase I metabolite, and 

two heterocyclic amines, MeIQx and IFP, inhibit ERα activation. Among the HAs tested, 

activation of the receptor is limited to PhIP, and other HAs can act as potential anti-

estrogens. We also show that PhIP increases MCF-7 cell proliferation and activates 

ERα dependent transcription, in agreement with results published by Lauber et al. 

(Lauber et al., 2004). 

PhIP Binding to Erα

The docking of E2 to the ERα LBD validates our model of ERα LBD and the 

docking algorithm for our system because the most stable E2 pose found was the same 

orientation as the co-crystal E2 conformation. The most favorable binding pose of PhIP 

was also found in the E2 binding site, even though the probability of PhIP binding is 

lower than E2 binding to the E2 site. This lower binding probability is consistent with the 

known high binding affinity of E2 to ERα (Kd ~ 10-9-10-10 M) and our NMR results show 

E2 competing out PhIP (see below).
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We designed an NMR competition experiment implementing trNOESY 

techniques that provides information about the PhIP binding site on the ERα protein. If 

PhIP binds the same site as E2, then adding E2 to the PhIP/ERα mixture should 

displace PhIP since E2 binds more strongly to ERα than PhIP (as predicted 

computationally).  If PhIP is binding in a different site than E2, then the negative (black) 

PhIP-bound peaks should remain. When E2 is added to the PhIP/ ERα mixture, a 

reversion in the NOE crosspeaks from the negative (black) back to positive (red) is 

observed, indicating that PhIP is no longer bound to ERα. These data highly suggest 

that PhIP is binding to the ligand-binding domain. However, another possibility is that 

PhIP is binding in another site, and E2 is preventing PhIP from binding because of a 

conformation change in the protein. Although this possibility may exist, the 

computational prediction of PhIP binding in the E2 binding site and our in vitro data on 

stimulated cell proliferation (see below) leads us to the conclusion that PhIP is binding 

in the E2 binding site competitively.

The effect of the HAs on the proliferative activity of whole cells was tested using 

a modified E-SCREEN assay (Rasmussen and Nielsen, 2002). This assay is based on 

the ability of estrogen-responsive MCF-7 cells to proliferate in the presence of 

compounds that mimic estrogen. Although a standard assay for screening for 

estrogenicity, the proliferative response of the MCF-7 cells varies depending on the 

MCF-7 subline employed. In these studies we used ATCC wild-type MCF-7 cells, which 

have been shown to vary in their response to estrogen incubation (Rasmussen and 

Nielsen, 2002). Using these cells, we found that micromolar concentrations of PhIP 

were able to stimulate proliferation up to 40% above vehicle-treated cells over a 72-hour 



34

incubation. Lauber et. al. determined that the same increase in cell proliferation could 

be caused by only nanomolar concentrations of PhIP (Lauber et al., 2004). These 

authors used MCF-7 cells obtained from the European Collection of Cell Cultures 

(ECACC) in their assays; presumably this MCF-7 cell variant is more sensitive to 

estrogen or estrogen-like compounds. Nevertheless, both studies demonstrated 

increased cell proliferation when incubated with PhIP. 

After much discussion regarding the potential estrogenicity of PhIP and its 

relevance to tumor progression (Gooderham et al., 2002; Lauber et al., 2000; Pfau et 

al., 2000), we and others (Lauber et al., 2004) now confirm that PhIP activates ER and 

stimulates cell growth. Both E2 and PhIP are able to activate ERα-dependent 

transcription in MCF-7 cells transfected with a standard estrogen responsive reporter 

plasmid containing three vitellogenin EREs upstream of the luciferase reporter gene. In 

other words, PhIP is able to use the endogenous ERα present in MCF-7 cells to effect 

transcription. Thirty minute pre-incubation with the complete anti-estrogen ICI 182,780 

inhibited this increased activity (data not shown) (Lauber et al., 2004), further 

suggesting that PhIP is effecting transcription through direct interaction with ERα. These 

results and the fold-activation of ERα transcription activity (compared to E2) in the 

presence of micromolar concentrations of PhIP are in agreement with previous work 

(Lauber et al., 2004). 

The in vitro data, without the supporting NMR and computational data, could also 

be explained by PhIP acting on the ERα pathway at points upstream or downstream 

from the receptor protein.  For the present studies, the trNOESY results, together with 

the in vitro data and docking results strongly support the idea that PhIP and E2 compete 
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for the same binding cavity within the ERα LBD. Taken together, these results 

demonstrate that PhIP initiates an estrogenic response in target cells by binding directly 

with the ERα.

N2-Hydroxy-PhIP, MeIQx and IFP Inhibition of ERα

Close examination of our docking data shows that PhIP makes a hydrogen bond 

between the exocyclic-amine and the carbonyl-oxygen of Leu387 (Fig. 2B). N2-Hydroxy-

PhIP shares all the same hydrophobic contacts as PhIP. However, because of the non-

optimal placement of the hydroxy group, no hydrogen bonds are made with the protein, 

decreasing its probability of binding in the E2 cavity (Fig. 2A). These data suggest that 

the driving force in binding in the E2 cavity is hydrophobic and that electrostatic 

interactions such as hydrogen bonds play only a secondary role.

In the cellular assays, N2-hydroxy-PhIP inhibited the ability of E2 to activate ERα. 

When compared to PhIP, the docking data predicts that the binding of N2-hydroxy-PhIP 

should be weaker. The cell assays confirm these predictions. When N2-hydroxy-PhIP is 

co-incubated with physiological concentrations of E2, much of the ER activation 

remains, showing that N2-hydroxy-PhIP is not a particulary effective inhibitor.

Like PhIP and N2-hydroxy-PhIP, MeIQx and IFP both contain an exocyclic amine 

with a methyl group at the adjacent carbon. However, MeIQx and IFP contain three 

fused-heterocyclic rings, which limits hydrogen bonding and hydrophobic interactions 

compared to PhIP. The low barrier rotation of the phenyl ring in PhIP optimizes non-

bonded contacts, which is not possible in MeIQx and IFP. Our docking data suggest 

that MeIQx and IFP do not bind favorably in the E2 binding cavity because the fixed 
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conformation of the fused-rings does not allow optimization of hydrophobic contacts. 

The lack of a favorable binding conformation is confirmed by the inability of these to 

compounds to stimulate reporter gene transcription in our in vitro cell assay (Fig. 5).

When MeIQx and IFP are co-incubated with physiological concentrations of E2, 

ERα activity is significantly inhibited. This inhibition is identical to results obtained when 

the compounds are added alone. Compared to N2-hydroxy-PhIP, MeIQx and IFP are 

much more effective inhibitors so that E2 activity remains below control levels. These 

results suggest that the mechanism of binding for MeIQX and IFP are different than 

PhIP and N2-hydroxy-PhIP; MeIQx and IFP may even bind in other regions of the ERα

protein.

Implications of Diet and Metabolism
The estrogenic potency of PhIP is comparable to other environmental estrogens 

found in the diet. Genistein, a known phytoestrogen found in soy products, was 

compared to PhIP in ERα activation assays (data not shown). At low concentrations 

(4X10-7M) there was no statistical difference in the activation of the ERα by either 

compound, but higher concentrations of genistein elicited a much greater ERα response 

than higher concentrations of PhIP. When investigating compounds from food, it is 

difficult to predict exposure levels for individual target cells. The concentrations of PhIP 

examined here are orders of magnitude higher than what a single cell may be exposed 

to after a meal of cooked meat. However, chronic exposure to PhIP over a lifetime may 

add to the total estrogenic burden of the body. 

In addition, it is not clear what the biological consequence of being exposed to 

xeno-estrogens may be. Although exposure to environmental estrogens may increase 
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the activity of endogenous ERα, exposure to other compounds may inhibit the activation 

(anti-xeno-estrogens), effectively canceling out the effect of the xeno-estrogens. In fact, 

although exposure to PhIP may be stimulating ERα activity, simultaneous consumption 

of the other HAs, MeIQx and IFP, may diminish that effect. Our previous studies have 

shown that when meat is cooked, the ratios of formation of PhIP:MeIQx and PhIP:IFP 

varies according to cooking conditions (Knize et al., 1998). In figure 5C, 1:1 ratios of 

PhIP:MeIQx and PhIP:IFP mixtures significantly inhibit the ability of PhIP to activate 

ERα. If the ratios are increased to 1:3, both MeIQx and IFP completely prevent any 

stimulatory action by PhIP. When cells are exposed to combinations of HAs and 

metabolites, as would happen during dietary consumption of cooked meat, the PhIP-

mediated activation of ERα can be abolished. Thus, the biological consequences of 

exposure to HAs may depend upon many complex factors, including the ratio of HAs 

formed in the meat, how well each compound is absorbed from the digestive tract, and 

the concentration of the compounds at the target cells.

Metabolism of the compounds will also contribute to the complexity of the overall 

human exposure. MCF- 7 cells contain active P450 metabolism; however most of the 

activity is CYP1A1. Our previous investigations have shown that these cells do not 

significantly metabolize PhIP (K. S. Kulp, unpublished results), suggesting that 

metabolites of the HAs are not confounding our measurements of the effects of the 

compounds on cell proliferation and ERα activity. However, in humans consuming 

cooked meats, hepatic and extra-hepatic metabolism of PhIP to N2-hydroxy-PhIP is 

extensive. In fact, only a small percentage of an ingested and absorbed dose of PhIP is 

excreted as the parent compound; the rest is metabolites (Malfatti et al., 1999). Our 
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results show that co-incubation of PhIP and N2-hydroxy-PhIP inhibits the stimulatory 

effect of PhIP on the ERα and that the amount of inhibition depends upon the amount of 

N2-hydroxy-PhIP present in the incubation. This suggests that the estrogenic potential 

of PhIP may depend in large part on the extent of Phase I activation of the compound, 

either in the liver or at the level of the target cell.

Conclusions

Here we show by experiment and computational methods that the food mutagen 

PhIP can activate human ERα by binding to the LBD (Figs. 2, 3), and that PhIP 

stimulates MCF-7 breast cancer cell proliferation, suggesting a mechanism for tissue-

specific carcinogenesis of this carcinogen. We also show that IFP, MeIQx, and the 

primary hydroxylated metabolite of PhIP do not stimulate breast cancer cell proliferation 

(Fig. 4). Moreover, MeIQx, IFP and N2-hydroxy-PhIP inhibit estrogen receptor activation 

(Fig. 5). Together, these results imply that these dietary constituents may play an active 

role in both activating and inhibiting hormone sensitive cancers. More importantly, 

understanding the mechanisms of action for the inhibitory HAs may lead to potent 

therapeutics against breast cancer.
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Figure Legend

Figure 1. Structures of heterocyclic amines and E2 (A) focused on in this study and 1D-
1H spectra of 5.95 mM PhIP (B) and 132 mM E2 (C) dissolved in deuterated DMSO 
(100%) showing the relative position of the NMR peaks for each compound.

Figure 2. Boltzmann probability distributions for each ligand in the E2 binding cavity (A). 
Cut away view of the ligand-binding cavity of ERα (B) with lowest energy docking poses 
of E2 (purple) and PhIP (colored-sticks). The surface is colored according to residue 
type; nonpolar (white), polar uncharged (green). Key hydrogen bonding residues are 
shown in colored-stick representations (Glu 353, Arg 394, Leu 387, His 524). Figure 
was made with VMD (Humphrey et al., 1996) and rendered with Raster3d (Merritt and 
Bacon, 1997).

Figure 3. The expanded region of a 900 ms mixing time NOESY spectrum (A) of 5.95 
mM PhIP in DMSO (<2%) exhibits weak positive NOE crosspeaks (boxed in red). The 
expanded regions of 300 ms mixing time NOESY spectra of ERα with (B) addition of 40 
fold molar excess PhIP indicating that PhIP binds, as evidenced by the flip in sign to 
negative crosspeaks (boxed in black), and (C) after addition of 0.25 molar ratio of E2 to 
a 1:40 ERα + PhIP sample showing that PhIP does not bind (red peaks) when E2 is 
present. 

Figure 4. Effect of PhIP, N2-Hydroxy-PhIP, MeIQx, IFP and E2 on MCF-7 cell 
proliferation. Cells were treated with compounds for 48 hours. Error is presented as 
standard error of the mean.  * = significantly different from control, p<0.01.  For PhIP 
treatments only, * = significantly different from control, p<0.01 and not significantly 
different from estradiol treatment  at a corresponding molar concentration. X Estradiol 
u PhIP, n N2-hydroxy-PhIP, p MeIQx and l IFP.

Figure 5. The effect of heterocyclic amines on estrogen receptor activation. Cells were 
treated with compounds as described in Methods. Error is presented as standard error 
of the mean. Compound concentrations are molar and E2 concentration is 10-9M in all 
experiments. Increasing concentrations of Has (A). N2-Hydroxy- PhIP, MeIQx and IFP 
are significantly different from PhIP-treated cells at the same concentrations (p<0.01). 
All compound treatments are significantly different from control and estradiol (p<0.01). 
Competition assays with estradiol (B). Cells were treated with 4x10-7M compound alone 
or compound with 10-9M E2 (hatched bars). Effect of combinations of heterocyclic 
amines on estrogen receptor activation (C). Simultaneous addition of PhIP and N2-
hydroxy- PhIP, or PhIP and MeIQx are significantly different from PhIP alone (*) 
(p<0.01) All compound treatments are significantly different from control and estradiol 
(p<0.01).
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Appendix B
Statement of Work

Computational Characterization and Prediction of Estrogen Receptor Coactivator 
Binding Site Inhibitors

Task 1: Computationally predict the relative binding of CBIs in the coactivator site and 
the CBI binding properties.  (Months 1-12)
(1.1) A minimum of three CBIs and a minimum of three estrogenic compounds will be 
docked into the coactivator site and the estradiol site, respectively, using AutoDock. 
(Months 1-2)
(1.2) The resulting combination of CBIs and estrogenic compounds will be rank ordered 
by effective binding. (Months 3-4)
(1.3) From the resulting docked compounds, molecular dynamics (MD) simulations will 
be run on the energetically favorably bound CBIs to investigate their effects on protein 
binding and stability.  MD simulations will be carried out using NAMD and each 
simulation will be run for 2 ns.  (Months 4-11)
(1.4) The resulting combination of CBIs and estrogenic compounds will be re-ranked 
based on the MD simulations. (Month 12)
Task 2: Biologically assay the effect of the CBI on the estrogen receptor activation 
(Months 1-12)
(2.1) Order and obtain the CBIs and estrogenic compounds.  (Month 1)
(2.2) Measure estrogen receptor activation by transfecting a reporter plasmid that 
contains 3 vitellogenin of estrogen response elements upstream of a luciferase reporter 
gene in MCF-7 human breast cancer cells. Receptor activity will be measured in the 
presence estradiol and each individual CBI.  (Month 2-3)
(2.3) Compare the effect of the CBIs on estradiol to their effect on the other estrogenic 
compounds analyzed in the docking program. (Months 4-6) 
Task 3: Spectroscopically measure the binding of the CBI to the ER LBD.
(3.1) Obtain the compounds used in the biological assay. (Month 1)
Order and obtain a pure sample of the human ERα (Month 1)
(3.2) If the CBIs demonstrate the ability to modulate estrogen receptor activation in the 
cells assays described in Task 2, they will be assayed for binding to Erα by themselves, 
using a transferred nuclear Overhauser effect spectroscopy (trNOESY) assay. (Months 
4-6)
(3.3) CBIs that bind ER and demonstrate activity in Task 2 will be assayed against 
estradiol in a competition NMR assay to determine if they bind in the presence of 
estradiol.  If they bind in the presence of estradiol, then the CBIs are binding to another 
site. (Months 6-8)
(3.4) To rank order the binding of CBIs, CBIs will be added individually to ERα, using an 
NMR assay (Months 8-10)
Task 4: The results will be put into a draft of a paper to be submitted later (Month 12)




